Genome-Wide Identification, Characterization, and Stress-Responsive Expression Profiling of Genes Encoding LEA (Late Embryogenesis Abundant) Proteins in Moso Bamboo (Phyllostachys edulis)
نویسندگان
چکیده
Late embryogenesis abundant (LEA) proteins have been identified in a wide range of organisms and are believed to play a role in the adaptation of plants to stress conditions. In this study, we performed genome-wide identification of LEA proteins and their coding genes in Moso bamboo (Phyllostachys edulis) of Poaceae. A total of 23 genes encoding LEA proteins (PeLEAs) were found in P. edulis that could be classified to six groups based on Pfam protein family and homologous analysis. Further in silico analyses of the structures, gene amount, and biochemical characteristics were conducted and compared with those of O. sativa (OsLEAs), B. distachyon (BdLEAs), Z. mays (ZmLEAs), S. bicolor (SbLEAs), Arabidopsis, and Populus trichocarpa. The less number of PeLEAs was found. Evolutionary analysis revealed orthologous relationship and colinearity between P. edulis, O. sativa, B. distachyon, Z. mays, and S. bicolor. Analyses of the non-synonymous (Ka) and synonymous (Ks)substitution rates and their ratios indicated that the duplication of PeLEAs may have occurred around 18.8 million years ago (MYA), and divergence time of LEA family among the P. edulis-O. sativa and P. edulis-B. distachyon, P. edulis-S. bicolor, and P. edulis-Z. mays was approximately 30 MYA, 36 MYA, 48 MYA, and 53 MYA, respectively. Almost all PeLEAs contain ABA- and (or) stress-responsive regulatory elements. Further RNA-seq analysis revealed approximately 78% of PeLEAs could be up-regulated by dehydration and cold stresses. The present study makes insights into the LEA family in P. edulis and provides inventory of stress-responsive genes for further functional validation and transgenic research aiming to plant genetic improvement of abiotic stress tolerance.
منابع مشابه
Genome-wide analysis and expression characteristics of small auxin-up RNA (SAUR) genes in moso bamboo (Phyllostachys edulis).
Moso bamboo (Phyllostachys edulis) is well known for its rapid shoot growth. Auxin exerts pleiotropic effects on plant growth. The small auxin-up RNA (SAUR) genes are early auxin-responsive genes involved in plant growth. In total, 38 SAUR genes were identified in P. edulis (PheSAUR). A comprehensive overview of the PheSAUR gene family is presented, including the gene structures, phylogeny, and...
متن کاملGenome-wide identification and characterization of TIFY family genes in Moso Bamboo (Phyllostachys edulis) and expression profiling analysis under dehydration and cold stresses
The proteins containing the TIFY domain belong to a plant-specific family of putative transcription factors and could be divided into four subfamilies: ZML, TIFY, PPD and JAZ. They not only function as key regulators of jasmonate hormonal response, but are also involved in responding to abiotic stress. In this study, we identified 24 TIFY genes (PeTIFYs) in Moso bamboo (Phyllostachys edulis) of...
متن کاملGenome-wide identification and expression analysis of the IQD gene family in moso bamboo (Phyllostachys edulis).
Members of the plant-specific IQ67-domain (IQD) protein family are involved in various aspects of normal plant growth and developmental processes as well as basal defence response. Although hundreds of IQD proteins have been identified, only a small number of IQDs have been functionally characterized. Moreover, no systematic study has been performed on moso bamboo. In this study, we performed f...
متن کاملGenome-Wide Analysis of the AP2/ERF Transcription Factors Family and the Expression Patterns of DREB Genes in Moso Bamboo (Phyllostachys edulis)
The AP2/ERF transcription factor family, one of the largest families unique to plants, performs a significant role in terms of regulation of growth and development, and responses to biotic and abiotic stresses. Moso bamboo (Phyllostachys edulis) is a fast-growing non-timber forest species with the highest ecological, economic and social values of all bamboos in Asia. The draft genome of moso ba...
متن کاملCharacterization of the Floral Transcriptome of Moso Bamboo (Phyllostachys edulis) at Different Flowering Developmental Stages by Transcriptome Sequencing and RNA-Seq Analysis
BACKGROUND As an arborescent and perennial plant, Moso bamboo (Phyllostachys edulis (Carrière) J. Houzeau, synonym Phyllostachys heterocycla Carrière) is characterized by its infrequent sexual reproduction with flowering intervals ranging from several to more than a hundred years. However, little bamboo genomic research has been conducted on this due to a variety of reasons. Here, for the first...
متن کامل